Items Quantity Price / 1

X View cart
Lorem ipsum thumb
Lorem ipsum thumb
Lorem ipsum thumb
Lorem ipsum thumb
thumb

Parallel Semi-supervised Multi-Ant Colonies Clustering Ensemble Based on MapReduce Methodology

15000.0
- +
Add to wishlist

Semi-supervised clustering ensemble has emerged as an important elaboration of classical clustering problem that improves quality and robustness in clustering by combining the results of different clustering components with user provided constraints. MapReduce is a parallel programming model for processing big data using large numbers of distributed computers (nodes). In this paper, we propose a novel semi-supervised multi-ant colonies consensus clustering algorithm and implement the parallelization of this algorithm using MapReduce on Hadoop platform. Our method incorporates pairwise constraints not only in each ant colony clustering process, but also in computing new similarity matrix during the process of the multi-ant colonies ensemble. In addition, it enhances the computational efficiency for big data by adopting a MapReduce Framework. Experimental results demonstrate the effectiveness of the proposed method.

Tell friends

Technology

JAVA
Description
Semi-supervised clustering ensemble has emerged as an important elaboration of classical clustering problem that improves quality and robustness in clustering by combining the results of different clustering components with user provided constraints. MapReduce is a parallel programming model for processing big data using large numbers of distributed computers (nodes). In this paper, we propose a novel semi-supervised multi-ant colonies consensus clustering algorithm and implement the parallelization of this algorithm using MapReduce on Hadoop platform. Our method incorporates pairwise constraints not only in each ant colony clustering process, but also in computing new similarity matrix during the process of the multi-ant colonies ensemble. In addition, it enhances the computational efficiency for big data by adopting a MapReduce Framework. Experimental results demonstrate the effectiveness of the proposed method.
Description

http://ieeexplore.ieee.org/document/7364211/?reload=true

Contact us

Subscribe to our news

Please fill the field before continuing

Rectus Infotech Pvt. Ltd. publishes a variety of newsletters and other email alerts to keep you updated on everything important happening in related to software technology field.